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1 Task

Find out possible displacement between the coordinate system of the CsI
calorimeter and the coordinate system of the wire chambers.

2 Motivation

In current πβ experimental setup most of charged particles originated in
the target traverse through two sets of cylindrical wire chambers and leave
showers in spherically shaped calorimeter. It is assumed that the center
of two collinear cylindrical chambers and the spherical calorimeter coincide.
However, it might not be so and precise knowledge of possible displacement
is necessery in order to fully understand the geometry of the detector.

3 Method

One could use raw chamber data to reconstruct a track left by a charged
particle, thus viewing a track and its intercept with the calorimeter surface
(a sphere of 26 cm radius) as “seen by the chamber”. Additionally, finding
the point where track hit the face of the calorimeter from the calorimeter data
would enable us to compare these points and deduce possible displacement
between them.
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4 Implementation

In real life it is very complicated to find out the exact location of the point
where track intercepts the face of the calorimeter from the calorimeter data.
All we can say is whether one particular crystal was hit by a given track.
Assuming that in such a case most of the energy were deposited in this
crystal we can run the following procedure. Set our cuts to separate clean
one charged particle events(Michels 1 ), accept and reconstruct only one
track and its interception with the calorimeter face. Then run through all
the energies deposited in the calorimeter and find out the greatest value. Put
calculated value of the intercept coordinate into histogram corresponding to
the crystal with most energy deposited. An outcome of this procedure is
a set of crystal’s maps e.g. two dimensional plots (θ vs.ϕ) of the crystal
illumination as seen by the chambers. Knowing the geometry of the crystal
we can predict how θ and ϕ projection of the map should appear and compare
them to experimental data.

Since radius of the calorimeter sphere is fixed at 26 cm we could effectively
reduce our problem to two dimensional one. Namely everything depends
only on spherical θ and ϕ of the crystals. We know that Michel events
are uniformly distributed in space. Therefore if in θ-ϕ space our crystals
were rectangular then probability density of hitting one particular crystal(for,
say, theta projection) would be dA

dθ
(where dA is infinitesimal area of the θ-

ϕ projection) and therefore would be a constant. As could be seen from
the picture our polygons remain polygons in θ-ϕ space and thus probability
density is not a constant.

1µ→ eνeνµ
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Regular hexagon shape will remain hexagonal in θ-ϕ space. Obviously
curves connecting the vertices are not straight lines but virtually

indistinguishable from ones for our purposes

In addition to that our plots are smeared by the chamber resolution.
Mathematically it means that our dA

dθ
function is convoluted by some other

function. Educated guess would be gaussian convolution and therefore trial
function is

f(m) =
∫ +∞

−∞

dA(θ)

dθ
Γe−

(θ−m)2

σ2 dθ

where Γ and σ are fit parameters of the gaussian.

As can be seen from the picture above unlike dA
dθ

, dA
dϕ

function remains
symmetric about the center of the crystal. So the center of the crystal related
to the peak value of some symmetric bell-shape curve. It provides additional
convenience not to calculate some complicated functions for our ϕ-projections
and use some “build in” symmetric functions such as gaussian. Later results
compared to the theoretical value confirm this assertion.

Detail calculations of dA
dθ

are shown below
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AI(θ) = 0.5(θ − θ2)(ϕu − ϕd)

from line equation

ϕu,d = θ

(
ϕu,da − ϕ2

θa − θ2

)
− θ2

(
ϕu,da − ϕ2

θa − θ2

)
+ ϕ2

therefore

ϕu − ϕd = 2θα− 2θ2α = 2α (θ − θ2)

where

α ≡ ϕua − ϕ2

θa − θ2

= −ϕ
d
a − ϕ2

θa − θ2

= 1.6814

is the tangent of corresponding straight line.2.

2It yet to be proven that in θ-ϕ space these are the straight lines. It turns out to be
very close
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Thus

AI = α (θ − θ2)2 , and
dAI

dθ
= 2α (θ − θ2)

By analogy

AII = 0.5(θ − θa)(ϕu − ϕd + a), ϕu − ϕd = −2βθ + 2βθa + a, β ≡ ϕdb−ϕ
d
a

θb−θa
= 0.0723

AIII = 0.5(θ − θb)(ϕu − ϕd + b), ϕu − ϕd = −2γθ + 2γθb + b, γ ≡ ϕ2−ϕdb
θ1−θb

= 1.8293

And finally

dAII

dθ
= −2βθ + 2βθa + a, a = 15.126

dAIII

dθ
= −2γθ + 2γθb + b, b = 13.937

Convolution with gaussian was performed in Maple. The outcome of this
procedure is rather robust and won’t be displayed here. It leaves us with 4
parameters of the fit to be determined. They are Γ and σ of the gaussian and
θa, θb of the probability density. Also note that parameters θa, θb additionally
enter the fitting function as limits of integrations over corresponding regions.

For my analysis I picked only crystal that were symmetric in ϕ. These
turned out to be the following crystals: pentagons (crystals 0 through 9),
hexagons type A (10 through 20), hexagons type B (80 through 90), hexagons
type C (110 through 120) and hexagons type D(170 through 179). The
following runs were analyzed

run41024− run41039 run41000− run41022 run40690− run40720
run42020− run42032 run36030− run36059 run36060− run36079
run36870− run36879 run36803, run40222 run40787

Unfortunately type C hexagons were located too close to the plastic vetos
and their spectra were distorted by the vetoed showers leaking through the
crystal towards the plastic veto.

Note “statistical advantage” of type D and B hexagons (chosen as an
example for all shown calculations), since the trial function contains two
physically interesting parameters (along with two parameters of the convo-
luting gaussian). Taking above calculations as a template it is easily seen
than the rest of the crystals provide only one interesting point.

Also the choice of the parameters (and therefore trial functions) is not
unique. For example for crystals D and B we could have fixed one of the
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parameters by introducing the theoretical difference between two points and
replacing one of the parameters by the sum(difference) of the second param-
eter and the theoretical difference. Careful analysis has shown that reducing
the number of parameters in such a way does not improve our fits signifi-
cantly (and sometimes makes it worse) but we loose half of the significant
information.

All the θ and typical ϕ projection fits can be seen on the picture below.

θ-projection fits for crystals 0 through 5
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θ-projection fits for crystals 6 through 11
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θ-projection fits for crystals 12 through 17

θ-projection fits for crystals 18,19 and 170 through 173
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θ-projection fits for crystals 174 through 179

θ-projection fits for crystals 80 through 85
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θ-projection fits for crystals 86 through 89
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ϕ-projection fits for crystals 0 through 5

Compared to the theoretical values, all the ϕ angles look very close to
expected values. It made us believe that there is no significant displacement
of two systems in x or y directions. Assuming that only z displacement took
place simple geometrical calculations yield the following result

Z

O O‘

r

z

x

Geometric setup for calculating displacement along z-axis

then

∆z > 0, ∆z = r sin(θ
′−θ)

sin(π−θ′ )

∆z < 0, ∆z = r sin(−θ′+θ)
sin(θ′ )

where θ
′

are angles deduced from the fits and θ are theoretical angles.
It is probably worth mentioning that since sin(180− θ) = sin(θ) for any

theta between 0 and π, formulae for positive and negative displacements look
absolutely the same (clearly up to a minus sign).

5 Results

For all the analyzed crystals the chart of derived quantities included below.
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Crystal ϕmeas σϕ χ2 θmeas σθ χ2 ∆z(cm) σ∆z(cm)
1. 55.24 0.05 2.50 65.12 0.07 1.87 −0.28 0.04
2. 126.42 0.03 1.98 66.87 0.10 1.81 0.59 0.04
3. 198.04 0.04 2.18 65.15 0.08 2.46 −0.26 0.04
4. 270.14 0.04 1.73 64.70 0.07 1.66 −0.49 0.4
5. 341.95 0.03 2.96 65.36 0.10 1.08 −0.16 0.03
6. 234.81 0.05 1.60 112.17 0.16 1.31 −1.06 0.08
7. 306.14 0.04 1.69 111.33 0.08 1.33 −1.46 0.04
8. 19.31 0.05 2.45 111.26 0.08 2.00 −1.49 0.03
9. 90.59 0.06 2.37 111.17 0.06 1.23 −1.54 0.03
10. 162.34 0.04 1.38 111.68 0.08 1.30 −1.29 0.04
11. 54.55 0.07 1.67 54.47 0.27 0.89 1.09 0.15
12. 127.07 0.05 1.80 56.54 0.34 1.22 2.17 0.18
13. 198.19 0.06 2.17 52.55 0.30 1.57 0.02 0.17
14. 270.15 0.08 1.71 51.24 0.20 1.04 −0.74 0.12
15. 342.83 0.06 2.42 55.25 0.29 1.19 1.51 0.16
16. 233.61 0.07 2.50 124.39 0.25 1.04 −1.71 0.13
17. 306.45 0.08 1.67 122.17 0.08 1.08 −2.85 0.04
18. 18.55 0.09 2.20 122.82 0.16 1.33 −2.52 0.08
19. 90.32 0.07 1.98 122.68 0.12 2.56 −2.59 0.06
20. 162.58 0.08 1.36 121.29 0.05 1.38 −3.29 0.02
81. 54.52 0.05 2.04 77.68 0.05 4.76 −1.32 0.02
82. 127.79 0.03 3.30 80.55 0.84 1.37 0.01 0.38
83. 198.96 0.05 2.10 78.33 0.09 1.76 −1.01 0.04
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84. 270.00 0.05 3.20 81.39 0.98 1.16 0.40 0.45
85. 341.84 0.03 3.75 78.35 0.11 1.39 −1.00 0.05
86. 234.23 0.06 4.23 99.85 0.07 0.80 0.17 0.03
87. 306.26 0.03 2.39 98.92 0.07 1.25 −0.26 0.03
88. 18.00 0.05 2.72 98.42 0.05 2.79 −0.49 0.02
89. 90.21 0.04 2.49 99.09 0.07 1.31 −0.18 0.03
90. 162.52 0.03 2.15 99.28 0.07 1.53 −0.09 0.03
81. 54.52 0.05 2.04 87.55 0.08 4.76 −0.48 0.04
82. 127.79 0.03 3.30 87.62 0.07 1.37 −0.45 0.03
83. 198.96 0.05 2.10 88.21 0.08 1.76 −0.18 0.04
84. 270.00 0.05 3.20 88.30 0.10 1.16 −0.14 0.04
85. 341.84 0.03 3.75 87.68 0.07 1.39 −0.42 0.03
86. 234.23 0.06 4.23 91.39 0.60 0.80 −0.00 0.27
87. 306.26 0.03 2.39 90.47 0.53 1.25 −0.42 0.24
88. 18.00 0.05 2.72 89.90 0.18 2.79 −0.68 0.08
89. 90.21 0.04 2.49 89.64 0.19 1.31 −0.80 0.09
90. 162.52 0.03 2.15 91.38 0.76 1.53 −0.01 0.34
171. 19.07 0.05 5.25 64.24 0.08 1.55 −1.47 0.04
172. 90.51 0.04 3.40 64.00 0.07 1.88 −1.59 0.03
173. 161.95 0.03 2.95 67.28 0.08 3.21 0.06 0.04
174. 234.74 0.03 3.99 63.69 0.10 1.30 −1.75 0.05
175. 306.61 0.03 2.20 67.26 0.07 2.20 0.05 0.03
176. 198.17 0.03 2.89 112.36 0.60 1.31 −0.24 0.30
177. 270.64 0.03 2.56 112.13 0.53 1.57 −0.36 0.26
178. 342.51 0.03 3.28 111.81 0.18 2.08 −0.51 0.08
179. 54.44 0.05 3.50 113.44 0.19 2.03 0.29 0.09
180. 125.98 0.03 3.62 111.77 0.76 1.56 −0.53 0.37
171. 19.07 0.05 5.25 74.69 0.06 1.55 −0.33 0.03
172. 90.51 0.04 3.40 75.26 0.08 1.88 −0.06 0.04
173. 161.95 0.03 2.95 75.68 0.06 3.21 0.14 0.03
174. 234.74 0.03 3.99 75.24 0.07 1.30 −0.06 0.03
175. 306.61 0.03 2.20 75.58 0.07 2.20 0.10 0.03
176. 198.17 0.03 2.89 105.08 0.54 1.31 0.22 0.25
177. 270.64 0.03 2.56 101.91 0.08 1.57 −1.26 0.04
178. 342.51 0.03 3.28 101.78 0.07 2.08 −1.32 0.03
179. 54.44 0.05 3.50 102.03 0.09 2.03 −1.20 0.04
180. 125.98 0.03 3.62 104.50 0.34 1.56 −0.06 0.16
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In final calculations of weighted average for ∆z I dropped crystals number
2,3,12 and 179 because despite the good statistical fits they didn’t show
expected signatures. It can be clearly seen from comparison of these crystals
and their alike. The final result yielded

∆z = (−0.78± 0.01)cm

thus assuring us that the chambers were “pushed” into the beam by above
indicated amount.

6 Conclusions and possible improvements

Although this analysis provides us with important information with desired
accuracy there is room for improvements. If we had better tracking procedure
which uniquely associates each track with the crystal it hit, I could drop the
requirement on keeping only one track and significantly improve the statistic
for given set of data. Secondly, one could desire to have information about
each individual crystal and its exact location with respect to the chambers.
This would require more work and far more superior statistic since it could
be seen that sometimes even the sign of the displacement does not agree
within a crystal.
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